¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-CONF-206542

Checkpointing Shared Memory
Programs at the Application-level

Greg Bronevetsky, Martin Schulz, Peter Szwed,
Daniel Marques, Keshav Pingali

September 14, 2004

Sixth European Workshop on OpenMP
Stockholm, Sweden
October 18, 2004 through October 22, 2004

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Checkpointing Shared Memory Programs at the
Application-level

*
Greg Bronevetsky, Daniel Marques, Keshav Pingali
Department of Computer Science
Cornell University
Ithaca, NY 14853

{bronevet,marques,pingali}@cs.cornell.edu

Peter Szwed
School of Electrical and Computer Engineering
Cornell University
Ithaca, NY 14853

pkszwed@csl.cornell.edu

ABSTRACT

Trends in high-performance computing are making it nec-
essary for long-running applications to tolerate hardware
faults. The most commonly used approach is checkpoint
and restart (CPR) - the state of the computation is saved
periodically on disk, and when a failure occurs, the compu-
tation is restarted from the last saved state. At present, it
s the responsibility of the programmer to instrument ap-
plications for CPR.

Our group s investigating the use of compiler technology
to instrument codes to make them self-checkpointing and
self-restarting, thereby providing an automatic solution to
the problem of making long-running scientific applications
resilient to hardware faults. Our previous work focused on
message-passing programs.

In this paper, we describe such a system for shared-
memory programs running on symmetric multiprocessors.
This system has two components: (i) a pre-compiler for
source-to-source modification of applications, and (i) a
runtime system that implements a protocol for coordinat-
ing CPR among the threads of the parallel application. For
the sake of concreteness, we focus on a non-trivial subset
of OpenMP that includes barriers and locks.

One of the advantages of this approach s that the ability
to tolerate faults becomes embedded within the applica-
tion itself, so applications become self-checkpointing and
self-restarting on any platform. We demonstrate this by
showing that our transformed benchmarks can checkpoint
and restart on three different platforms (Windows/z86,
Linuz/z86, and Tru6f/Alpha). Our ezperiments show
that the overhead introduced by this approach is usually
quite small; they also suggest ways in which the current
implementation can be tuned to reduced overheads further.

*This research was supported by DARPA Contract
NBCH30390004 and NSF Grants ACI-9870687, EIA-
9972853, ACI-0085969, ACI-0090217, ACI-0103723, and
ACI-012140.

Part of this work was performed under the auspices of
the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

Martin SchuIzT
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA 94551

schulzm@linl.gov

1. INTRODUCTION

The problem of making long-running computational sci-
ence programs resilient to hardware faults has become crit-
ical. This is because many computational science pro-
grams such as protein-folding codes using ab initio meth-
ods are now designed to run for weeks or months on
even the fastest available computers. However, these ma-
chines are becoming bigger and more complex, so the mean
time between failures (MTBF) of the underlying hardware
is becoming less than the running times of many pro-
grams. Therefore, unless the programs can tolerate hard-
ware faults, they are unlikely to run to completion.

The most commonly used approach in the high-
performance computing arena is checkpoint and restart
(CPR). The state of the program is saved periodically dur-
ing execution on stable storage; when a hardware fault is
detected, the computation is shut down and the program is
restarted from the last checkpoint. Most existing systems
for checkpointing such as Condor [7] take System-Level
Checkpoints (SLC), which are essentially core-dump-style
snapshots of the computational state of the machine. A
disadvantage of SLC is that it is very machine and OS-
specific. Furthermore, system-level checkpoints by defini-
tion cannot be restarted on a platform different from the
one on which they were created.

In most programs however, there are a few key data
structures from which the entire computational state can
be recovered; for example, in an n-body application, it
is sufficient to save the positions and velocities of all the
particles at the end of a time step. In Application-Level
Checkpointing (ALC), the application program is written
so that it saves and restores its own state. This has several
advantages. First, applications become self-checkpointing
and self-restarting, eliminating the extreme dependence of
SLC implementations on particular machines and operat-
ing systems. Second, if the checkpoints are created ap-
propriately, they can be restarted on a different platform.
Finally, in some applications, the size of the saved state
can be reduced dramatically. For example, for protein-
folding applications on the IBM Blue Gene machine, an
application-level checkpoint is a few megabytes in size

whereas a full system-level checkpoint is a few terabytes.
For applications on most platforms, such as the IBM Blue
Gene and the ASCI machines, hand-implemented ALC is
the default.

In this paper, we describe a semi-automatic system
for providing ALC for shared-memory programs, par-
ticularly in the context of Symmetric Multi-Processor
(SMP) systems. Applications programmers need only
instrument a program with calls to a function called
potentialCheckpoint() at places in the program where
it may be desirable to take a checkpoint (for example, be-
cause the amount of live state there is small). Our Cor-
nell Checkpointing Compiler (C®) tool then automatically
instruments the code so that it can save and restore its
own state. We focus on shared-memory programs writ-
ten in a subset of OpenMP [10] including parallel regions,
locks, and barriers. We have successfully tested our check-
point/restart mechanism on a variety of OpenMP plat-
forms including Windows/x86 (Intel compiler), Linux/x86
(Intel compiler), and Tru64/Alpha (Compaq/HP com-
piler).

The system described here builds on our previous work
on ALC for message-passing programs [2, 1]. By com-
bining the shared-memory work described here with our
previous work on message-passing programs, it is possible
obtain fault tolerance for hybrid applications that use both
message-passing and shared-memory communication.

The remainder of this paper is structured as follows. In
Section 2, we briefly discuss prior work in this area. In
Section 3, we introduce our approach and how our tool
is used. In Section 4, we present experimental results.
Finally, we discuss ongoing work in Section 5.

2. PRIOR WORK

Alvisi et al. [6] is an excellent survey of techniques devel-
oped by the distributed systems community for recovering
from fail-stop faults.

The bulk of the work on CPR of parallel applications
has focused on message-passing programs. Most of this
work deals with SLC approaches, such as [13] [3] and thus
results in solutions where the message passing library must
be modified in order to allow checkpointing to take place.
At the application-level, most solutions are hand-coded
checkpointing routines run at global barriers. Recently,
our research group has pioneered preprocessor-based ap-
proaches for implementing ALC (semi-)automatically [2,
1].

Checkpointing for shared memory systems has not been
studied as extensively. The main reason for this is that
shared memory architectures were traditionally limited in
their size and hence fault tolerance was not a major con-
cern. With growing system sizes, the availability of large-
scale NUMA systems, and the use of smaller SMP con-
figurations as building blocks for large-scale MPPs, check-
pointing for shared memory is growing in importance.

Existing approaches for shared memory have been re-
stricted to SLC and are bound to particular shared mem-
ory implementations. Both hardware and software ap-
proaches have been proposed. SafetyNet [11] is an ex-
ample of a hardware implementation. It inserts buffers
near processor caches and memories to log changes in lo-
cal processor memories as well as messages between proces-
sors. While very efficient (SafetyNet can take 10K check-
points per second), SafetyNet requires changes to the sys-
tem hardware and is therefore not portable. Furthermore,
because it keeps its logs inside regular RAM or at best
battery-backed RAM rather than some kind of stable stor-

Compile time

C3 Preproc. Native Comp.

e T L B

Executable

Application Application
Source Source
with CP code

Run time

Coordination Coordination
Layer Layer

OpenMP
(unmodified)

I SMP Hardware |

Shared Memory System
with OpenMP

Figure 1: Overview of the C® system.

age, SafetyNet is limited in the kinds of failures it is capa-
ble of dealing with.

On the software side, Dieter et al. [4] and the Berkeley
Labs Linuz Checkpoint/Restart [5] provide checkpointing
for SMP systems. Both approaches modify specific systems
and are thus bound to them, rendering these solutions non-
portable.

In addition, several projects have explored checkpointing
for software distributed shared memory (SW-DSM) [8, 9].
They are all implemented within the SW-DSM system it-
self and exploit internal information about the state of the
shared memory to generate consistent checkpoints. They
are therefore also bound to a particular shared memory
implementation and do not offer a general and portable
solution.

3. OVERVIEW OF APPROACH

Figure 1 describes our approach. The C® pre-compiler
reads C/OpenMP application source files and instruments
them to perform application-level saving of shared and
thread-private state. The only modification that program-
mers must make to source files is to insert calls to a func-
tion called potentialCheckpoint() at points in the pro-
gram where a checkpoint may be taken. Ideally, these
should be points in the program where the amount of live
state is small.

It is important to note that checkpoints do not have to be
taken every time a potentialCheckpoint () call is reached;
instead, a simple rule such as ”checkpoint only if a certain
quantum of time has elapsed since the last checkpoint”
is used to decide whether to take a checkpoint at a given
location. Checkpoints taken by individual threads are kept
consistent by our coordination protocol.

The output of the pre-compiler is compiled with the na-
tive compiler on the hardware platform, and linked with a
library that implements a coordination layer for generating
consistent snapshots of the state of the computation. This
layer sits between the application and the OpenMP run-
time layer, and intercepts all calls from the instrumented
application program to the OpenMP library. This de-
sign permits us to implement the coordination protocol
without modifying the underlying OpenMP implementa-
tion. This promotes modularity, eliminates the need for

access to OpenMP library code, which is proprietary on
some systems, and allows us to easily migrate from one
OpenMP implementation to another. Furthermore, it is
relatively straightforward to combine our shared-memory
checkpointer with existing application-level checkpointers
for MPI programs to provide fault tolerance for hybrid
MPI/OpenMP applications.

3.1 Tool Usage

C?® can be used as a pass before an application’s source
code is run through the system’s native compiler. The
process of generating a fault tolerant application can be
broken down into several steps. This process is easily au-
tomated and can be hidden inside a script, in much the
same way that the details of linking with an MPI library
are often hidden inside a mpicc script.

e Use the native preprocessor to translate the original
source code into its corresponding pure C form. This
involves applying defines, resolving ifdefs and in-
serting into the source code the files specified by
include statements.

e The resulting preprocessed files are then given to C2,
which instruments them in a way that allows them
to record their own state.

e The instrumented fault-tolerant files are fed to the
native C compiler and linked to the C® coordina-
tion layer that keeps track of the application’s inter-
actions with OpenMP and coordinates the threads’
checkpoints

In practice a user would use a single script to do all of
the above actions, providing a list of files to be compiled
and receiving a fault tolerant executable in return.

3.2 Protocol

We use a blocking protocol to co-ordinate the saving of
state by the individual threads. This protocol has three
phases, shown pictorially in Figure 2.

1. Each thread calls a barrier.

2. Each thread saves its private state. Thread 0 also
saves the system’s shared state.

3. Each thread calls a second barrier.

We assume that a barrier is a memory fence, which is
typical among shared memory APIs. It is easy to see that
if the application does not itself use synchronization oper-
ations such as barriers, its input-output behavior will not
be changed by using this protocol to take checkpoints. The
only effect of the protocol from the perspective of the appli-
cation is to synchronize all threads and enforce a consistent

Threads
1 l -
Record
Checkpoint
2
1 \ >

Barrier Barrier

Figure 2: High-level view of checkpointing protocol

view of the shared state by using a memory fence opera-
tion (normally implemented implicitly within the barrier).
This state may not be identical to the system’s state had a
checkpoint not been taken. However, it is a legal state that
the system could have entered since all consistency models
only define the latest point at which a memory fence oper-
ation can take place, not the earliest (that is, it is always
legal to include an additional memory fence operation).
Furthermore, it is obvious that the state visible to each
thread immediately after the checkpoint is identical to the
state saved in the checkpoint.

These properties ensure that we can restart the program
by restoring all shared memory locations to their check-
pointed values. Intuitively, if it was legal to flush all caches
and set every thread’s view of the shared memory to that
memory image, then by restoring the entire shared address
space to the image and flushing all the caches, we will re-
turn the system to an equivalent state.

The recovery algorithm follows from this, and is de-
scribed below.

1. All threads restore their private variables to their
checkpointed values and thread 0 restores all the
shared addresses to their checkpointed values.

2. Every thread calls a barrier.
This recovery barrier is necessary to make sure that
the entire application state has been restored before
any thread is allowed to access it.

3. Every thread continues execution.

Our protocol inserts additional barriers into the execu-
tion of the program and it is possible for these barriers to
cross the application’s own barriers and lock acquisitions.
In such cases the checkpointing process may be corrupted
or a deadlock may occur. To deal with this problem our
protocol may force checkpoints to happen before the appli-
cation’s barriers and lock acquires, ensuring that no check-
point conflicts with the application’s causal interactions.

4. EXPERIMENTAL EVALUATION

Application-level checkpointing increases the running
times of applications in two different ways. Even if no
checkpoints are taken, the instrumented code executes
more instructions than the original application to perform
bookkeeping operations . Furthermore, if checkpoints are
taken, writing the checkpoints to disk adds to the exe-
cution time of the program. In this section, we present
experimental results that measure these two overheads for
the C? system.

For our benchmark programs, we decided to use the
codes from the SPLASH-2 suite [14] that we converted to
run on OpenMP. We omitted the cholesky benchmark be-
cause it ran for only a few seconds, which was too short for
accurate overhead measurement. We also omitted volrend
because of licensing issues with the tiff library, and fmm be-
cause we could not get even the unmodified benchmark to
run on our platforms.

One of the major strengths of application-level check-
pointing is that the instrumented code is as portable as
the original code. To demonstrate this, we ran the in-
strumented SPLASH-2 benchmarks on three different plat-
forms: a 2-way Athlon machine running Linux, a 4-way
Compaq Alphaserver running Tru64 UNIX, and an 8-way
Unisys SMP system running Windows. In this section, we
present overhead results on the first two platforms; we were
not able to complete the experiments on the third platform
in time for inclusion in this paper.

Problem Uninstrumented | C3-instrumented run time | C>-instrumentation
Benchmark size run time 0 checkpoints taken overhead
fft 2%% data points 20s 20s 0%
lu-c 5000x5000 matrix 110s 110s 0%
radix 100,000,000 keys, radix=512 30s 31s 3%
barnes 16384 bodies, 15 steps 103s 106s 3%
ocean-C 514x514 ocean, 600 steps 162s 162s 0%
radiosity Large Room 8s 8s 0%
raytrace Car Model, 64MB RAM 32s 34s 6%
water-nsquared 4096 molecules, 60 steps 260s 223s -14%
water-spatial 4096 molecules, 60 steps 156s 141s -9%

Table 1: SPLASH-2 Linux Experiments

4.1 Linux/x86 Experiments

The Linux experiments were conducted on a 2-way
1.733GHz Athlon SMP with 1GB of RAM. The operating
system was SUSE 8.0 with a 2.4.20 kernel. The applica-
tions were compiled with the Intel C++ Compiler Version
7.1. All experiments were run using both processors (i.e.
P=2). Checkpoints were recorded to the local disk. The
key parameters of the benchmarks used in the Linux ex-
periments are shown in Table 1.

41.1 Execution Time Overhead

In this experiment, we measured the running times of (i)
the original codes, and (ii) the instrumented codes with-
out checkpointing. Times were measured using the Unix
time command. Each experiment was repeated five times,
and the average is reported in Table 1. From the spread
of these running times, we estimate that the noise in these
measurements is roughly 2-3%. The table shows that for
most codes, the overhead introduced by C*® was within this
noise margin. For two applications, water-nsquared and
water-spatial, the instrumented codes ran faster than
the original, unmodified applications. Further experimen-
tation showed that this unexpected improvement arose
largely from the superior performance of our heap imple-
mentation compared to the native heap implementation
on this system. We concluded that the overhead of C* in-
strumentation code for the SPLASH-2 benchmarks on the
Linux platform is small, and that it is dominated by other
effects such as the quality of the heap implementation.

Checkpoint | Seconds per | Seconds per
Benchmark Size (MB) | Checkpoint Recovery
fft 765 43 22
lu-c 191 2 5
radix 768 43 24
barnes 569 4 10
ocean-c 56 1 4
radiosity 32 0 1
raytrace 68 0 2
water-nsquared 4 1 0
water-spatial 3 0 0

Table 2: Overhead of Checkpoint
Linux.

and Recovery on

4.1.2 Checkpoint and Recovery Overhead

Finally, we measured the execution time overhead of tak-
ing a single checkpoint and performing a single recovery.
These numbers can be used in formulas containing partic-
ular checkpointing frequencies and hardware failure prob-
abilities to derive the overheads for a long-running appli-
cation.

To measure the overhead of taking a single checkpoint,
we ran the C®-transformed version of each benchmark
without taking a checkpoint and compared its execution
time to the time it took to run the same benchmark and
taking a single checkpoint.

To measure the overhead of a single recovery, we first
measure the time of execution from the start of the pro-
gram until after the single checkpoint completes. Then
we add to this the time measured from the beginning of
a restart from this checkpoint to the end of the program.
Finally, from this sum, we subtract the execution time for
the complete program that takes a single checkpoint.

The results are shown in Table 2. The time to take
checkpoints is fairly low for most applications, and is sig-
nificant only for applications for which checkpoint sizes are
very large (fft and radix). As mentioned before, these
checkpoints were saved to local disk on the machine. If
they were saved to a networked file system, we would ex-
pect the overheads to be larger.

4.2 Alpha/Tru64 Experiments

The Alpha experiments were conducted at the Pitts-
burgh Supercomputing Center on the Lemieux cluster.
This cluster is composed of 750 Compaq Alphaserver ES45
nodes. Each node is an SMP with 4 1Ghz EV68 proces-
sors and 4GB of memory. The operating system is Compaq
Tru64 UNIX V5.1A. All codes were run on all 4 processors
of a single node (i.e. P=4). Checkpoints were recorded
to system scratch space, which is a networked file sys-
tem available from all nodes. The key parameters of the
SPLASH-2 benchmarks used in the Alpha experiments are
shown in Table 3.

421 Execution Time Overhead

We measured the overheads of instrumentation on
Lemieux using the same methodology we used for Linux.
Table 3 shows the results.

These results show that except for radix and ocean-c,
the overheads due to C®’s transformations are either neg-
ligible or negative. The overheads in radix and ocean-c
arise from two different problems that we are currently
addressing.

The overhead in radix comes from some of the details
of how C? performs its transformations. Our state-saving
mechanism computes addresses of all local and global vari-
ables, which may prevent the compiler from allocating
these variables to a register. For radix, it appears that this
inability to register-allocate certain variables leads to a no-
ticeable loss of performance. We are currently re-designing
the mechanism to circumvent this problem.

Our experiments also showed that the overhead in
ocean-c execution comes from our heap implementation

Problem Uninstrumented | C3-instrumented run time | C>-instrumentation
Benchmark size run time 0 checkpoints taken overhead
fft 2%® data points 68s 67s -2%
lu-c 12000x 12000 matrix 719s 724s 1%
radix 300,000,000 keys, radix=512 61s 70s 15%
ocean-C 1026 xocean, 600 steps 153s 183s 20%
radiosity Large Room 13s 12s -9%
raytrace Car Model, 1GB RAM 20s 20.4s 2%
water-nsquared 12167 molecules, 10 steps 136s 140s 3%
water-spatial 17576 molecules, 40 steps 214s 218s 2%

Table 3: Characteristics and Results of SPLASH-2 Alpha Experiments

(replacing our heap implementation with the native heap
eliminated this overhead). While this implementation has
been optimized for Linux, it is not as optimized for Alpha.
This tuning is underway.

4.2.2 Checkpoint and Recovery Overhead

Table 4 shows the checkpoint time and the recovery time
for the different applications. It can be seen that there is
a correlation between the sizes of the checkpoints and the
amount of time it takes to perform the checkpoint. In
these experiments, the checkpoint files were written to the
system scratch space rather than to a local disk, so for
codes that take larger checkpoints, the overheads observed
on Lemieux are higher than the overheads on the Linux
system shown in Table 2.

Checkpoint | Seconds per | Seconds per
Benchmark Size (MB) | Checkpoint Recovery
fft 3074 363 32
lu-c 1103 136 7
radix 2294 285 36
ocean-c 224 68 ¥
radiosity 43 8 1
raytrace 1033 137 7
water-nsquared 16 3.75 388
water-spatial 12 3.5 17

Table 4: Overhead of each checkpoint and recovery on
Alpha.

The only code with a high recovery overhead is
water-nsquared, and it highlighted an inefficiency in
our current implementation. Note that water-nsquared
takes 3.5 seconds to record a 16MB checkpoint but takes
388 seconds to recover. The reason for this is that
water-nsquared malloc()-s a large number of individ-
ual objects: 194K. This in comparison to the 18K ob-
jects that water-spatial allocates or the 65K allocated
by water-nsquared given the input parameters used on
Linux. C*’s checkpointing code is optimized to use buffer-
ing when writing these objects to a checkpoint, but its
recovery code does not have such optimizations, so it per-
forms one file read for every one of these objects. The cost
of that many file reads, even to buffered files is very high
and results in a long recovery time. Our next implementa-
tion of the C® system will optimize reading the checkpoint
files to eliminate this inefficiency.

Ocean-c’s recovery overhead was measured to be nega-
tive. However this negative overhead was within the vari-
ability of the timing results in this experiment, so it ap-
pears to be an artifact of the fluctuations inherent to a
networked file system.

4.3 Discussion

When we began this work, we invested considerable time
in refining our coordination protocol because we thought
that the execution of the protocol would increase the run-
ning time of the application significantly. Indeed, much
of the literature on fault-tolerance focuses on protocol op-
timizations such as reducing the number of messages re-
quired to implement a given protocol.

Our experiments showed that the overheads are largely
due to other factors, summarized below.

e The performance of some codes is very sensitive to
the memory allocator. Overall, we obtained good re-
sults on the Linux system because we have tuned our
allocator for this system; on Lemieux, where the tun-
ing work is still ongoing, some codes such as ocean-c
had higher overheads.

e The instrumentation of code to enable state-saving
prevents register allocation of some variables in codes
like radix on Lemieux. This is relatively easy to
fix by introducing new temporaries, and it is being
implemented in our preprocessor.

e For codes that produce large checkpoint files, the
time to write out these files dominates the checkpoint
time. We are exploring incremental checkpointing,
as well as compiler analysis, to reduce the amount of
saved state.

e Finally, recovery time for codes that create a lot of
small objects, such as water-nsquared on Lemieux,
needs to be reduced by better management of file

1/0.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented an implementation
of a blocking, coordinated checkpointing protocol for
application-level checkpointing (ALC) of shared-memory
programs using locks and barriers. The implementation
has two components: (i) a pre-compiler that automatically
instruments C/OpenMP programs so that they become
self-checkpointing and self-restarting, and (ii) a runtime
layer that implements the co-ordination protocol. Exper-
iments with SPLASH-2 benchmarks show that the over-
heads introduced by our implementation are small. The
implementation can be used to checkpoint shared-memory
programs; it can also be used in concert with a system
for checkpointing message-passing programs, such as [2, 1,
12], to provide a solution for checkpointing hybrid message-
passing/shared-memory programs.

Our ALC approach has the advantage that programs in-
strumented by our pre-compiler become self-checkpointing
and self-restarting, so they become fault-tolerant in a

platform-independent manner. This is a major advantage

over system-level checkpointing approaches, which are very [12]

sensitive to the architecture and operating-system. We

have demonstrated this platform-independence by running

on a variety of platforms. [13]
In the future, we intend to extend (C®) to deal with a

broader set of shared-memory constructs. In particular,

we intend to support the full OpenMP standard. Further-

more, we intend to couple (C?) with the MPI checkpointer

described in [1] to produce a fault tolerance solution for [14]

programs using both message-passing and shared-memory

constructs.

6.
[1]

3]

[4]

[5]

[6]

(8]

[9]

[10]

[11]

REFERENCES

G. Bronevetsky, D. Marques, K. Pingali, and

P. Stodghill. Collective operations in an
application-level fault tolerant MPI system. In
Proceedings of the 2003 International Conference on
Supercomputing, pages 234-243, June 2003.

Greg Bronevetsky, Daniel Marques, Keshav Pingali,
and Paul Stodghill. Automated application-level
checkpointing of MPI programs. In Principles and
Practice of Parallel Programming (PPoPP), pages
84-94, June 2003.

M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems.
IEEE Transactions on Computing Systems,
3(1):63-75, 1985.

W. Dieter and Jr. J. Lumpp. A user-level
checkpointing library for POSIX threads programs.
In Proceedings of 1999 Symposium on Fault-Tolerant
Computing Systems (FTCS), June 1999.

J. Duell. The Design and Implementation of
Berkeley Lab’s Linux Checkpoint/Restart.

http://www.nersc.gov/research /F TG /checkpoint /reports.html.

M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message passing systems. Technical Report
CMU-CS-96-181, Carnegie Mellon University,
Pittsburgh, PA, USA, October 1996.

T. Tannenbaum J. B. M. Litzkow and M. Livny.
Checkpoint and Migration of Unix Processes in the
Condor Distributed Processing System. Technical
Report Technical Report 1346, University of
Wisconsin-Madison, 1997.

Angkul Kongmunvattan, S. Tanchatchawal, and

N. Tzeng. Coherence-based coordinated
checkpointing for software distributed shared
memory systems. In Proceedings of the International
Conference on Distributed Computer Systems
(ICDCS 2000), 2000.

N. Neves, M. Castro, and P. Guedes. A checkpoint
protocol for an entry consistent shared memory
system. In Proceedings of the Symposium on
Principles of Distributed Computing Systems
(PDCS), 1994.

OpenMP Architecture Review Board. OpenMP C
and C++ Application, Program Interface, Version
1.0, Document Number 004-2229-01 edition,
October 1998. Available from
http://www.openmp.org/.

D. Sorin, M. Martin, M. Hill, and D. Wood.
SafetyNet: Improving the availability of shared
memory multiprocessors with global

checkpoint /recovery. In Proceedings of the
International Symposium on Computer Architecture

(ISCA 2002), July 2002.

G. Stellner. CoCheck: Checkpointing and Process
Migration for MPI. In Proceedings of International
Parallel Processing Symposium(IPPS), 1996.

Georg Stellner. CoCheck: Checkpointing and Process
Migration for MPI. In Proceedings of the 10th
International Parallel Processing Symposium (IPPS
’96), Honolulu, Hawaii, 1996. Also available at http:
//citeseer.nj.nec.com/stellner96cocheck.html.
S. Woo, M. Ohara, E. Torrie, J. Singh, and

A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations.
In Proceedings of the International Symposium on
Computer Architecture 1995, pages 24-36, June 1995.

